

ICESP - Italian Circular Economy Stakeholder Platform

Piattaforma Italiana per l'Economia Circolare

RIPLARAEE - Riciclo chimico di plastiche miste da RAEE

http://www.enea.it

Localizzazione della buona pratica	Roma (Roma) Lazio Italia Roma (Roma) Lazio Italia
Lingua originale della buona pratica	Italiano
Area	Gestione rifiuti
Partners	RINA CONSULTING- CENTRO SVILUPPO MATERIALI S.p.A. Puli Ecol Recuperi Srl
Settore	Gomma e materie plastiche Riciclaggio
Target Groups	1)Aziende e /o filiere con scarti di plastiche non riciclabili 2)Costruttori impianti di selezione plastiche da rifiuti
Tipo di finanziamento	Programmi nazionali
Livello di Applicazione	Unione Europea
Ambito tematico	Approccio Integrato per Filiera o Settore
Durata	Da Gennaio 0201
TRL	TRL 3 - Prova di concetto sperimentale

Motivazione

Gli scarti di plastiche miste da rifiuti di apparecchiature elettriche ed elettroniche (RAEE) presentano una difficile gestione a fine vita per l'estrema eterogeneità delle miscele polimeriche, come le poliolefine (PE, PP), polistirene (PS), policarbonati (PC), poliammidi (PA), acrilonitrile-butadiene stirene (ABS), high impact polistirene ad alto impatto (HIPS) e cloruro di polivinile (PVC). La presenza inoltre di additivi pericolosi e di frazioni estranee come le fibre ceramiche rinforzate contribuiscono ad ostacolarne il tradizionale riciclo meccanico. Tra gli additivi di maggiore rischio ambientale si segnalano i ritardanti di fiamma a base di composti aromatici alogenati (bromo e cloro) e in combinazione con molecole inorganiche come triossido di antimonio. La Direttiva RAEE (2012/UE/19) prescrive inoltre che le plastiche contenenti ritardanti di fiamma bromurati, negli impianti di trattamento, non possano essere riciclate insieme con le plastiche non additivate, ma debbano essere separate e subire un trattamento che non sia dannoso per la salute e l'ambiente. Queste difficoltà spingono a cercare una soluzione alternativa al riciclo meccanico.

Descrizione

L'ENEA ha sviluppato una tecnologia per la produzione di un olio di pirolisi e un materiale adsorbente da plastiche RAEE utilizzando

catalizzatori zeolitici ricavati da un altro scarto, ovvero le ceneri di carbone. E' stato realizzato un reattore a letto fluidizzato alimentato in

continuo e provvisto di un sistema di condensazione dell'olio di pirolisi. La qualità dell'olio viene migliorata con vapore acqueo a 250-300 gradi

per ridurre la quantità di idrocarburi pesanti e idrocarburi combinati con azoto, bromo e cloro, in modo che possa essere una fonte di prodotti

utili per la chimica di sintesi. Il char invece è stato attivato mediante reazione combinata con urea e idrossido di potassio allo scopo di

aumentarne la superficie specifica e utilizzarlo come adsorbente.

Risultati

- 1. Sintetizzate quattro tipologie di catalizzatori zeolitici dalle ceneri di carbone;
- 2.Arricchimento fino ad una percentuale del 74% della frazione pregiata di miscela idrocarburica contenente i BTEX (benzene, toluene,

etilbenzene, xileni,) composti su cui si basa la chimica di sintesi, grazie all'impiego di un catalizzatore ottenuto dalle ceneri di carbone;

- 3.Riduzione del 66% di composti idrocarburici azotati grazie all'upgrading idrotermale del prodotto di pirolisi
- 4.Ottenimento di un char con sviluppo superficiale pari a 1840 m2/g, ricadente nell'intervallo di variabilità ammesso per un carbone attivo
- 5.Arricchimento in etilbenzene della miscela idrocarburica attraverso all'upgrading idrotermale fino al 200% rispetto al prodotto ottenuto

con semplice degradazione termica

Condizioni per la replicabilità

Raggiungere un volume critico di miscela idrocarburica appetibile per gli impianti di raffinazione; stabilire dei nuovi requisiti/standard tecnici

che consentano l'estrazione dei prodotti pregiati utili per la chimica di sintesi.

Barriere, criticità, limiti

Aspetti relativi alla qualità

Parole chiave

plastiche da rifiuti elettrici ed elettronici, pirolisi, char, olio di pirolisi

Contatti

lorenzo.cafiero@enea.it